If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4y^2+28y=0
a = -4; b = 28; c = 0;
Δ = b2-4ac
Δ = 282-4·(-4)·0
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{784}=28$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(28)-28}{2*-4}=\frac{-56}{-8} =+7 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(28)+28}{2*-4}=\frac{0}{-8} =0 $
| 15x+4=50 | | 2y+4=3y+1 | | Y=10000(0.97)x | | 5(x-1)3-30=10 | | 8+6h-4=80-4 | | (-5x-1*2x^2)=(2x^2) | | 1.3(3.1r-10,4)=16 | | 4(x+9=20 | | 12x+15x=45 | | 72=2x6x=12x | | 7x+4+10x–7=14–23x+16–7x | | y=4L+3 | | 5/6=60/x | | 4x^2+48=4x+24+4x^2-8x | | 4d-5=50-7 | | y=50+2 | | p×72=2232 | | .80n=5.50 | | m-45=203.4 | | 3+4f=15 | | 3x+135=12x-9 | | -7(w-6)=-3w+46 | | x^2+4x-18=240 | | 2x0.5= | | 3u+3=-9 | | 5x+10=3(x-10) | | 2(3t-)+t=30-t | | 42.5+y=112.75 | | 627.90=42(x+) | | 8-3(x-4=4 | | s/30=112 | | 72=6(m+3.4) |